Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

${[Ba_2(C_2O_4)(H_2O)_6](NCS)_2}_n$: a layered mixed-anion barium oxalate

Eugenia V. Peresypkina,^a* Alexander V. Virovets,^a Jeanne V. Akhmerkina^b and Larisa B. Serezhkina^b

^aNokolaev Institute of Inorganic Chemistry, SB RAS, Ak. Lavrentiev prospekt 3, Novosibirsk 630090, Russia, and ^bSamara State University, Ak. Pavlov str. 1, Samara 443011, Russia

Correspondence e-mail: peresyp@che.nsk.su

Received 1 April 2004 Accepted 28 April 2004 Online 30 June 2004

We present the first example of a compound containing Ba²⁺, $C_2O_4^{2-}$, water and some additional halide or pseudo-halide anions, *viz*. hexa- μ_2 -aqua- μ_6 -oxalato-dibarium(II) diisothiocyanate, {[Ba₂(C₂O₄)(H₂O)₆](NCS)₂]_n. The structure consists of positively charged planar covalent layers of Ba²⁺ cations, oxalate anions and water molecules. The first coordination sphere of the Ba²⁺ cation contains six water molecules and four O atoms from two planar oxalate anions. The oxalate anion lies on an inversion centre and is coordinated to six Ba²⁺ cations, each donor O atom being bonded to two cations. Pairs of water molecules are coordinated by two Ba²⁺ cations. The layers are interspersed with non-coordinated NCS⁻ anions.

Comment

By varying the experimental conditions, different barium oxalate salts can be obtained. The structures of $[Ba(C_2O_4)(H_2C_2O_4)(H_2O_2)]$ (Chaix-Pluchery *et al.*, 1989), [Ba(C₂O₄)(H₂C₂O₄)] (Mutin et al., 1979), [Ba₂(C₂O₄)₂(H₂O)] (Mutin et al., 1981), $[Ba(C_2O_4)(H_2O_2)]$ (Christensen et al., 1995), [Ba(C₂O₄)(H₂O)] (Mutin *et al.*, 1974; Huang & Mak, 1990), $[Ba_2(C_2O_4)_2(H_2O)_7]$ (Neder *et al.*, 1997) and $[Ba_2(C_2O_4)_2(H_2C_2O_4)(H_2O)_2]$ (Mutin & Dusausoy, 1981) have been determined by single-crystal and powder diffraction. In addition, various complexes containing transition metal cations, Ba²⁺ and oxalate are known. However, there are no structurally characterized compounds containing Ba²⁺, $C_2O_4^{2-}$, water and anions such as halide, pseudo-halide, chalcogenide, etc. In this article, we present the first example of such a compound, viz. $[Ba_2(C_2O_4)(H_2O_6)](NCS)_2$, (I) (Fig. 1).

The connectivity and dimensionality of barium oxalate structures have been analysed with the program package

Figure 1

The coordination spheres of the Ba²⁺ and oxalate ions in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) x, 1 + y, z; (iii) 1 - x, 1 - y, 1 - z; (iv) -x, 2 - y, 1 - z; (v) 1 - x, -y, 1 - z; (vi) x, y - 1, z; (vii) 1 + x, y - 1, z; (vii) 1 + x, y - 1, z.]

TOPOS using algorithms based on Voronoi–Dirichlet partition (Blatov *et al.*, 2000), without assumption of any atomic radii. We have found that the structure of (I) is layered, in contrast with most previously known barium oxalates, which have three-dimensional polymeric structures, the sole exception being $[Ba_2(C_2O_4)_2(H_2O)_7]$ (Neder *et al.*, 1997), which is also layered.

In the structure of (I), positively charged planar covalent layers of Ba^{2+} cations, oxalate anions and water molecules are interspersed with NCS⁻ anions (Fig. 2). Ten O atoms are coordinated to each Ba^{2+} cation, four of them belonging to oxalates and six to water molecules. The oxalate anion sits on a centre of inversion and is planar, with each O atom being bonded to two Ba^{2+} cations. Each water molecule is coordi-

Figure 2

The crystal packing in (I). Short interlayer $N \cdots H$ and $S \cdots H$ contacts are shown with dashed lines.

nated to two Ba²⁺ cations. Therefore, the structure of the layer can be described as $[Ba(C_2O_4)_{3/6}(H_2O)_{6/2}]_{\infty\infty}^{n+}$ or $[Ba_2(\mu_6, \eta^4-C_2O_4)(\mu_2-H_2O)_6]^{2+}$ or $A_2K^{42}M_6^{-2}$ (A represents the central atom, K represents the coordinated ion and M represents coordinated water molecules; Porai-Koshits & Serezhkin, 1994).

Both the oxalate anion and Ba^{2+} cation centres form their own distorted triangular nets. Such motifs are typical for oxalates, according to Naumov *et al.* (1996). The topology of the layer is different from that found in $[Ba_2(C_2O_4)_2(H_2O)_7]$, where Ba^{2+} forms regular hexagonal nets and the oxalate anion centres form distorted rectangular nets.

Weak hydrogen bonds between water molecules and the N atoms of the isothiocyanate anions join the layers together in (I). The O(water) \cdots N distances are in the range 2.927 (12)–3.08 (2) Å. There is also a weak O(water) \cdots S(CN) interaction, with an S \cdots H distance of 2.51 (11) Å, between the isothiocyanate anion and one of the bridging water molecules.

Experimental

Compound (I) was obtained during an investigation of the $Ba(NCS)_2-UO_2(C_2O_4)-H_2O$ system. Solid $UO_2(C_2O_4)$ was added to a hot aqueous solution of barium isothiocyanate in a 1.5:1 molar ratio, giving a clear orange solution. After slow evaporation at room temperature, orange lath-shaped crystals precipitated, which were identified as $Ba_3UO_2(C_2O_4)_2(NCS)_2\cdot 8H_2O$ (Markov & Sergeeva, 1961). These were filtered off and the remaining solution was left for some time, resulting in a light-yellow crystalline precipitate, which appeared as a mixture of a fine yellow crystalline powder and colourless opaque plate-shaped crystals of (I).

Crystal data

$[Ba_{2}(C_{2}O_{4})(H_{2}O)_{6}](NCS)_{2}$ $M_{r} = 586.96$ Triclinic, $P\overline{1}$ a = 6.8990 (9) Å b = 6.9441 (6) Å c = 9.6383 (10) Å $\alpha = 85.517 (8)^{\circ}$ $\beta = 71.498 (9)^{\circ}$ $\gamma = 67.037 (8)^{\circ}$ $V = 402.63 (8) Å^{3}$	Z = 1 $D_x = 2.421 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 24 reflections $\theta = 9-15^{\circ}$ $\mu = 5.16 \text{ mm}^{-1}$ T = 293 (2) K Plate, colourless 0.11 × 0.11 × 0.06 mm
Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: by integra- tion (<i>SHELX</i> 76; Sheldrick, 1976) $T_{min} = 0.428$, $T_{max} = 0.819$ 1539 measured reflections 1411 independent reflections 1291 reflections with $I > 2\sigma(I)$	$R_{int} = 0.025$ $\theta_{max} = 25.0^{\circ}$ $h = -7 \rightarrow 8$ $k = -8 \rightarrow 8$ $l = 0 \rightarrow 11$ 3 standard reflections frequency: 60 min intensity decay: none
Refinement P^2	$w = 1/[\sigma^2(F_o^2) + (0.0979P)^2]$

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.157$ S = 1.191411 reflections 109 parameters Only coordinates of H atoms refined $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0979P)^{2} + 5.3664P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 1.70 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -1.81 \text{ e} \text{ Å}^{-3}$

Table 1

Selected interatomic distances (Å).

Ba1-O1	2.723 (8)	Ba1-O5	2.856 (8)
Ba1-O1 ⁱ	2.771 (8)	Ba1-O5 ⁱⁱ	2.864 (9)
Ba1-O2 ⁱⁱ	2.730 (8)	C1-C1 ^v	1.55 (2)
Ba1-O2 ⁱⁱⁱ	2.762 (8)	C1-O1	1.266 (14)
Ba1-O3	2.916 (10)	C1-O2	1.246 (13)
Ba1-O3 ⁱ	2.972 (10)	N1-C2	1.122 (17)
Ba1-O4	2.899 (10)	C2-S1	1.637 (12)
Ba1-O4 ^{iv}	3.074 (11)		

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z; (iii) x, 1 + y, z; (iv) -x, 2 - y, 1 - z; (v) 1 - x, -y, 1 - z.

After being located from a difference electron-density map, the positions of the water H atoms were refined with the O–H and H···H distances restrained to 0.82 (2) and 1.36 (2) Å, respectively, to give reasonable H–O–H angles, and with a U_{iso} value of 0.05 Å².

Data collection: *CAD-4 Software* (Enraf–Nonius, 1988); cell refinement: *CAD-4 Software*; data reduction: *CAD-4 Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *TOPOS*4.0 (Blatov *et al.*, 2000); software used to prepare material for publication: local programs.

The authors are grateful to the Russian Foundation for Basic Research for covering the cost of the licence for the Cambridge Structural Database (project No. 02-07-90322). The authors also thank Professor V. A. Blatov for providing the *TOPOS* program.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TR1090). Services for accessing these data are described at the back of the journal.

References

- Blatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (2000). J. Appl. Cryst. 33, 1193.
- Chaix-Pluchery, O., Mutin, J. C., Bouillot, J. & Niepce, J. C. (1989). Acta Cryst. C45, 1699–1705.
- Christensen, A. N., Hazell, R. G., Bell, A. M. T. & Altomare, A. (1995). J. Phys. Chem. Solids, 56, 1359–1362.
- Enraf-Nonius (1988). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Huang, S.-H. & Mak, T. C. W. (1990). Z. Kristallogr. 190, 305-308.
- Markov, V. P. & Sergeeva, T. V. (1961). Zh. Neorg. Khim. 6, 368–375. (In Russian.)
- Mutin, J. C., Aubry, A., Bertrand, G., Joly, E. & Protas, J. (1974). C. R. Acad. Sci. Ser. C, 278, 1001–1004.
- Mutin, J. C. & Dusausoy, Y. (1981). J. Solid State Chem. 38, 394-405.
- Mutin, J. C., Dusausoy, Y. & Protas, J. (1981). J. Solid State Chem. 36, 356– 364.
- Mutin, J. C., Watelle, G. & Dusausoy, Y. (1979). J. Solid State Chem. 27, 407–421.
- Naumov, D. Yu., Podberezskaya, N. V., Boldyreva, E. V. & Virovets, A. V. (1996). Zh. Strukt. Khim. 37, 550–578. (In Russian.)
- Neder, R., Burghammer, M., Schulz, H., Christensen, A. N., Krane, H. G., Bell, A. M. T., Hewat, A. W. & Altomare, A. (1997). Z. Kristallogr. 212, 305– 326.
- Porai-Koshits, M. A. & Serezhkin, V. N. (1994). Zh. Neorg. Khim. 39, 1109– 1132. (In Russian.)

Sheldrick, G. M. (1976). SHELX76. University of Cambridge, England.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.